教學(xué)目標(biāo):1、經(jīng)歷簡單的收集、整理、描述和分析數(shù)據(jù)的過程。2、使學(xué)生初步了解數(shù)據(jù)的收集和整理過程,學(xué)會整理簡單的數(shù)據(jù),會看簡單的統(tǒng)計表和統(tǒng)計圖,會根據(jù)統(tǒng)計圖表中的數(shù)據(jù)回答一些簡單的問題。3、使學(xué)生體驗解數(shù)據(jù)的收集、整理、描述和分析的過程,能發(fā)現(xiàn)信息并進行簡單的數(shù)據(jù)分析。4、體會到數(shù)學(xué)知識與實際生活緊密聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生細(xì)心觀察的良好學(xué)習(xí)品質(zhì)。教學(xué)重點:繪制縱向復(fù)式條形統(tǒng)計圖。教學(xué)難點:根據(jù)統(tǒng)計圖發(fā)現(xiàn)問題、提出問題、解決問題。教具準(zhǔn)備:課件。教學(xué)過程:一、情境導(dǎo)入:你們知道全球有多少人?中國有多少人嗎?那你們知道自己所在的區(qū)有多少人嗎?下面我們一起對收集到的信息進行整理和分析。二、探究新知:1、根據(jù)統(tǒng)計表,分別完成兩個單式條形統(tǒng)計圖2、根據(jù)兩個條形統(tǒng)計圖你能發(fā)現(xiàn)哪些信息?如果要在一個統(tǒng)計圖中描述這些信息怎么辦?在學(xué)習(xí)復(fù)式統(tǒng)計表時是怎么把兩個單式統(tǒng)計表合并的?
一、初步感知間隔的含義1、請同學(xué)們伸出右手,張開,數(shù)一數(shù),5個手指之間有幾個空格?在數(shù)學(xué)上,我們把 空格叫做間隔,也就是說,5個手指之間有幾個間隔?4個間隔是在幾個手指之間?2. 其實,這樣的數(shù)學(xué)問題,在我們的生活中,隨處可見。誰能舉幾個這樣的例子3、看圖:在畫面上我們看到春天桃紅柳綠,到處是一派生機勃勃的景象,你們知道嗎?3月12日是什么日子,這一天全國上下到處都在植樹,為保護環(huán)境獻出自己的一份力量。 出示圖:這里從頭到尾栽了幾棵樹,數(shù)一數(shù),它們之間又有幾個間隔呢?你發(fā)現(xiàn)了什么?誰來說一說?同時板書。4、那你能像這樣用一個圖表示出來嗎?請你們選擇一種動手畫一畫吧!5、匯報:畫了8棵樹,他們之間有7個間隔數(shù),9棵樹之間有8個間隔?!?、你發(fā)現(xiàn)植樹棵樹和間隔數(shù)之間有什么規(guī)律呢?(自己先想想,再把你的想法和伙伴們互相交流一下)。反饋:誰來說說你的發(fā)現(xiàn)?評價:哦,這是你的發(fā)現(xiàn)……你還能用一個算式來概括。邊板書邊說:同學(xué)們都發(fā)現(xiàn)了從頭到尾栽一排樹時,植樹棵樹比間隔數(shù)多1,(指表格),也可以寫成兩端要栽時,植樹棵數(shù)-間隔數(shù)+1,間隔數(shù)=植樹棵樹-1。
二、教學(xué)目標(biāo)1、知識與技能:使學(xué)生經(jīng)歷探索加法交換律的過程,理解并掌握加法交換律,初步感知加法交換律的價值,發(fā)展應(yīng)用意識。2、數(shù)學(xué)思考:使學(xué)生在學(xué)習(xí)用符號、字母表示加法交換律的過程中,初步發(fā)展學(xué)生的符號感,逐步提高歸納、推理的抽象思維能力。3、解決問題:運用加法交換律的思想探索其他運算中的交換律。4、情感與態(tài)度:使學(xué)生在數(shù)學(xué)活動中獲得成功的體驗,進一步增強對數(shù)學(xué)學(xué)習(xí)的興趣和信心,初步形成獨立思考和探究問題的意識和習(xí)慣。三、教學(xué)重點:理解并運用加法交換律。四、教學(xué)難點:在學(xué)生已有知識經(jīng)驗的基礎(chǔ)上引導(dǎo)學(xué)生歸納出加法交換律。五、教學(xué)關(guān)鍵:引導(dǎo)學(xué)生運用各種不同的表達方法理解加法交換律的思想。六、教學(xué)過程(一)情境,形成問題1、談話:同學(xué)們喜歡運動嗎?你最喜歡哪項體育運動?李叔叔是一個自行車旅行愛好者,咱們一起去了解一下李叔叔的情況。1、出示李叔叔騎車旅行的情境圖。仔細(xì)觀察這幅圖,你從圖上知道哪些信息?
1、完成P78“做一做”第二題:讀出下面的分?jǐn)?shù)。2、完成P78“做一做”第一題:直接在書上的橫線上寫出對應(yīng)的百分?jǐn)?shù)。3、P79練習(xí)十九第4題:讀出或?qū)懗鰣髾谥械陌俜謹(jǐn)?shù)。4、“做一做”第四題:學(xué)生根據(jù)自己的理解,說說分?jǐn)?shù)和百分?jǐn)?shù)在意義上有何不同。四、布置作業(yè)練習(xí)十九第1~3題。教學(xué)追記:本堂課,我從三個層次入手。第一層:聯(lián)系生活實際引出百分?jǐn)?shù);第二層:理解百分?jǐn)?shù)的具體含義;第三層:教學(xué)百分?jǐn)?shù)的讀寫。三個層次,思路清晰,教學(xué)層次明顯。其中,我把教學(xué)重點放在理解百分?jǐn)?shù)的具體含義上,并及時與分?jǐn)?shù)做了比較,教學(xué)結(jié)構(gòu)較為嚴(yán)謹(jǐn)。2、百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)的互化教學(xué)目標(biāo):1、使學(xué)生理解并掌握百分?jǐn)?shù)和小數(shù)互化的方法,能正確地把分?jǐn)?shù)、小數(shù)化成百分?jǐn)?shù)或把百分?jǐn)?shù)化成分?jǐn)?shù)、小數(shù)。2、在計算、比較,分析、探索百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)互化的規(guī)律的過程中,發(fā)展學(xué)生的抽象概括能力。3、通過探索百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)互化的規(guī)律,激發(fā)學(xué)生的數(shù)學(xué)探索意識。
一、創(chuàng)設(shè)情境,猜想驗證1.猜一猜,摸一摸。一盒粉筆若干支,5種不同的顏色。至少摸幾支能保證:(1)2支同色的。(2)3支同色的。(3)4支同色的。2.想一想,摸一摸。請學(xué)生獨立思考后,先在小組內(nèi)交流自己的想法,再動手操作試一試,驗證各自的猜想。在這個過程中,教師要加強巡視,要注意引導(dǎo)學(xué)生思考本題與前面所講的抽屜原理有沒有聯(lián)系,如果有聯(lián)系,有什么樣的聯(lián)系,應(yīng)該把什么看成抽屜,要分放的東西是什么。二、觀察比較,分析推理1.說一說,在比較中初步感知。2.想一想,在反思中學(xué)習(xí)推理。三、深入探究,溝通聯(lián)系四、對比練習(xí),感悟新知1.說一說。把紅、黃、藍、白四種顏色的球各10個放到一個袋子里。至少取多少個球,可以保證取到兩個顏色相同的球?2.算一算。向東小學(xué)六年級共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么?五、總結(jié)評價六、布置作業(yè)
1.猜袋中東西數(shù) 將全班分成若干小組,每組抽一人到前面,背對著班級。教師拿一個袋子,并向?qū)W生們借一些書本,鉛筆,鋼筆,橡皮等,放入袋中,然后讓各組學(xué)生輪流猜袋子里東西的數(shù)目,猜對的給該組記10分。 2.學(xué)生一起有節(jié)奏地說唱Let’s chant部分的歌謠,并請學(xué)生分角色表演。 (二)呈現(xiàn)新課 (Presentation) 1.搶讀單詞 教師將全班分成若干小組,然后逐個出示一些圖片,學(xué)生們舉手搶答,教師讓最先舉手的學(xué)生將圖片的單詞說出來,說對的給該組記10分,得分最多的組為優(yōu)勝。 2.看單詞卡讀出單詞并說出中文,復(fù)習(xí)1-3單元要求四會的單詞。 3.教師用實物投影出示1-3單元課文中的某一幅圖片,讓學(xué)生根據(jù)圖片內(nèi)容進行對話練習(xí)。 4.讓學(xué)生填寫Assessment部分的內(nèi)容,自己對1-3單元所學(xué)內(nèi)容的掌握情況進行自我評價。 5.教師向?qū)W生出示已制作好的window card:This si a window card.并教讀window card教師問學(xué)生:Do you like it? Can you make it? Do you want to learn how to make a window card?
1.叫一名學(xué)生在班里走動,站在一名學(xué)生的后面。 2.教師舉起一張本單元的單詞圖片。先正確地說出這個單詞第一個字母的讀音的學(xué)生坐下,另一名學(xué)生繼續(xù)在班里走動,繼續(xù)活動。 板書設(shè)計 :My friends 黑板上方:上課前打好的四線三格,在課堂上隨講隨寫的字母Ww, Xx, Yy, Zz 黑板下方: 教案點評: 本課時主要學(xué)習(xí)字母Ww, Xx, Yy, Zz及相關(guān)單詞。因為本課時將結(jié)束字母的學(xué)習(xí),因此在熱身、復(fù)習(xí)環(huán)節(jié),有必要先進行字母Aa-Vv的聽寫。然后出示字母卡、單詞卡讓學(xué)生認(rèn)讀字母和復(fù)習(xí)單詞。呈現(xiàn)新課環(huán)節(jié),教師可將字母教學(xué)放到單詞中進行。在教學(xué)過程 中,教師結(jié)合圖片或?qū)嵨镏饌€進行字母和單詞的教學(xué),可輔以字母課件進行教學(xué),便于學(xué)生更好的領(lǐng)會和掌握。教師要注意側(cè)重字母的書寫教學(xué),使學(xué)生養(yǎng)成正確的書寫習(xí)慣。兩個小游戲“Bingo”和“Listen and show”幫助學(xué)生在趣味活動中鞏固了所學(xué)的全部字母。擴展性活動的設(shè)計目的在于復(fù)習(xí)本單元的單詞。
1.Let’s say學(xué)習(xí)字母Uu, Vv, Ww,以及以這些字母開頭的單詞。2.Let’s do本部分通過有韻律的歌謠,來復(fù)習(xí)鞏固A-W的字母?!窘虒W(xué)重點】學(xué)習(xí)字母Uu, Vv, Ww及以其為首字母的單詞【教學(xué)難點】單詞umbrella, violin, wind和字母Uu, Vv, Ww的發(fā)音.【教具準(zhǔn)備】1 教師準(zhǔn)備教材配套的錄音帶。2 教師準(zhǔn)備 umbrella, vest, violin, window, wind 的圖片和詞卡。3 教師準(zhǔn)備字母卡 Aa----Ww ?!窘虒W(xué)過程】1 熱身、復(fù)習(xí) (Warm-up/Revision)(1)Oral practice學(xué)生口語會話展示。教師可根據(jù)學(xué)生情況提示他們增加對內(nèi)容。(2)游戲:“猜猜看”。教師用簡筆畫的方法在黑板上畫某種交通工具的某個部位,邊畫邊問:What is it? 學(xué)生隨意想象,猜圖說:A panda? A jeep? A pear? … 教師再繼續(xù)畫一兩筆,讓學(xué)生接著猜,并以小組為單位討論,最后由一名學(xué)生代表說出一個答案。教師將圖畫完,帶領(lǐng)學(xué)生一起說: Look! It’s a … 猜對的小組贏得一分。(以交通工具、玩具和文具詞為主) 還可讓學(xué)生代替教師進行此項活動。
教師問:Can you spell these words? 如有學(xué)生能夠拼出單詞,教師要給與表揚并說:那讓我們來看一看他拼的對不對,然后出示單詞卡。如沒有學(xué)生拼出單詞,教師說:我們學(xué)習(xí)單詞不僅要會說還要會寫,今天我們就來學(xué)習(xí)幾個單詞的拼寫,看誰學(xué)得快。然后出示單詞卡。 讓學(xué)生看單詞卡拼讀單詞。 教師讓學(xué)生看單詞回答:How many letters in this word?學(xué)生回答后,讓他們背著拼出單詞。 教師讓學(xué)生在四線三格中默寫字母b, o, k, r, l, e, p, n, c, I, a,教師教學(xué)生在四線三格中書寫單詞。告訴學(xué)生首先要把每個字母書寫正確,然后按照單詞的拼寫把字母寫在一起,注意單詞的每個字母間要有一點距離。教師在教寫ruler和pencil-case時, 注意小寫u和s還沒有學(xué)習(xí)書寫,讓學(xué)生照著板書寫就可以了。 讓學(xué)生照板書抄字頭,然后每個單詞寫一行。 (三)趣味操練(Practice)
Part two1. Teaching AimsMaster the 26 letters.Master the pronunciation of the letters.2. Teaching Aidsa tape-recorder, some cards, some papers and so on.3. Important pointsThe pronunciation of the letters4. Teaching steps1) Greetings and revisionLet some groups act out the dialogue in the last lesson.2) New contentsLet them say out the 26 letters and let some ones say them out.Then listen and learn the letters song.First, give them some minutes and let them read the letters. Let’s see whether there is anyone who can learn anything in them. Then give them some information and let them read again. At last, give them the answer and read again.Let them remember it.PracticeShow the cards where are written the math patterns and let some answer it. Then ask “Who can read it in English?” Let some one read it. Others follow him.Next, show the cards and ask others answer them. T asks and S answers. Then S asks and S answers. Practice in pairs.HomeworkMaster the letters.Teaching notesPart three1. Teaching AimsIntroduce self and others using the words and phrases.Let’s play.2. Teaching Aidsa tape-recorder, some cards3. Important pointsShe has…She likes…I have…4. Teaching stepsGreetings and revisionLet some one read the letters and divide them by the pronunciations.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學(xué)習(xí)本框內(nèi)容對學(xué)生來講,將有助于他們正確認(rèn)識馬克思主義,運用馬克思主義中國化的理論成果,分析解決遇到的社會問題。具有很強的現(xiàn)實指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識,思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時期,對一些社會現(xiàn)象能主動思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標(biāo)1.馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進而運用馬克思主義哲學(xué)的基本觀點分析和解決生活實踐中的問題。3.實踐的觀點是馬克思主義哲學(xué)的首要和基本的觀點,培養(yǎng)學(xué)生在實踐中分析問題和解決問題的能力,進而培養(yǎng)學(xué)生在實踐活動中的科學(xué)探索精神和革命批判精神。
4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.