活動(dòng)三:認(rèn)識(shí)正方體的特征,總結(jié)長(zhǎng)方體、正方體的關(guān)系(1)學(xué)生用類比法學(xué)習(xí)正方體的特征,并揭示出長(zhǎng)方體和正方體的內(nèi)在聯(lián)系,得出:正方體是特殊的長(zhǎng)方體。(2)說(shuō)說(shuō)生活中哪些物體是長(zhǎng)方體、正方體? 開(kāi)放的學(xué)習(xí)方式,以學(xué)生的自主學(xué)習(xí)為中心,讓學(xué)生通過(guò)自身的發(fā)展嘗試總結(jié),驗(yàn)證,實(shí)現(xiàn)知識(shí)的“再創(chuàng)造”。比較是認(rèn)識(shí)事物的主要方法之一,特別在幾何體教學(xué)中,運(yùn)用比較方法,加強(qiáng)形體間的聯(lián)系和區(qū)別,提高識(shí)別能力。同時(shí)滲透事物普遍聯(lián)系和發(fā)展變化的辯證唯物主義觀。聯(lián)系生活,體現(xiàn)數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活的特點(diǎn)?;顒?dòng)四:學(xué)以致用智慧屋,包含判斷題、計(jì)算題等多種題型的練習(xí),培養(yǎng)學(xué)生展開(kāi)多向思維,是學(xué)生能夠從不同角度解決問(wèn)題的基礎(chǔ)。這樣的練習(xí)題,側(cè)重于知識(shí)點(diǎn)的落實(shí),鞏固新知。
2、從正面初步感受成正比例量的特征發(fā)給學(xué)生學(xué)習(xí)卡,呈現(xiàn)給學(xué)生兩組成正比例的量,目的是讓學(xué)生從正面發(fā)現(xiàn)正比例的特征,通過(guò)觀察、自主探索與合作交流等方式初步建構(gòu)正比例的意義并做抽象歸納。3、在練習(xí)中繼續(xù)感受成正比例量的特征練習(xí)分兩個(gè)層次,首先呈現(xiàn)給學(xué)生簡(jiǎn)單的成正比例和不成正比例的三組量進(jìn)行比較,然后呈現(xiàn)一些易錯(cuò)的數(shù)量關(guān)系進(jìn)行判斷,目的是讓學(xué)生在比較中,逐步剝離無(wú)關(guān)因素,突出正比例的本質(zhì)特征,并形成正確的正比例的判定思路。(三)說(shuō)學(xué)法在本節(jié)課中,我著重引導(dǎo)學(xué)生,在獨(dú)立思考的基礎(chǔ)上,學(xué)會(huì)小組合作交流。具體表現(xiàn)在學(xué)會(huì)思考,學(xué)會(huì)觀察,學(xué)會(huì)表達(dá),學(xué)會(huì)思考。使學(xué)生有足夠的時(shí)間和空間經(jīng)歷觀察、猜測(cè)、推理等活動(dòng)過(guò)程,并對(duì)學(xué)生進(jìn)行激勵(lì)性的評(píng)價(jià),讓學(xué)生樂(lè)于說(shuō),善于說(shuō)。
首先,學(xué)生帶著如下三個(gè)問(wèn)題自學(xué)課文,(電腦出示):(1)用什么方法可以得到計(jì)算圓錐體積的公式?(2)圓柱和圓錐等底等高是什么意思?(3)得出了什么結(jié)論?圓錐體積的計(jì)算公式是什么?其次,學(xué)生操作實(shí)驗(yàn),先讓學(xué)生比較圓柱和圓錐是等底等高。再讓學(xué)生做在圓錐中裝滿沙土往等底等高的圓柱中倒和在圓柱中裝滿沙土往等底等高的圓錐中倒的實(shí)驗(yàn),得出倒三次正好倒?jié)M。使學(xué)生理解等底等高的圓柱和圓錐,圓錐的體積是圓柱體積的,圓柱的體積是圓錐的3倍。第三、小組討論,全班交流,歸納,推導(dǎo)出圓錐體積的計(jì)算公式:V= Sh。第四、讓學(xué)生做在小圓錐里裝滿沙土往大圓柱中倒的實(shí)驗(yàn),得出倒三次不能倒?jié)M。再次強(qiáng)調(diào),只有等底等高的圓柱和圓錐才存在著一定的倍數(shù)關(guān)系。第五、師生小結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。
(一)說(shuō)教材《百分?jǐn)?shù)的一般應(yīng)用題》是在學(xué)生學(xué)過(guò)用分?jǐn)?shù)解決問(wèn)題和百分?jǐn)?shù)的意義、百分?jǐn)?shù)和分?jǐn)?shù)、小數(shù)的互化的基礎(chǔ)上進(jìn)行教學(xué)的。主要內(nèi)容是求常見(jiàn)的百分率,也就是求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的實(shí)際問(wèn)題,這種問(wèn)題與求一個(gè)數(shù)是另一個(gè)數(shù)的幾分之幾的問(wèn)題相同。所以求常見(jiàn)的百分率的思路和方法與分?jǐn)?shù)解決問(wèn)題大致相同。通過(guò)這部分教學(xué),既加深了學(xué)生對(duì)百分?jǐn)?shù)的認(rèn)識(shí),又加強(qiáng)了知識(shí)間的聯(lián)系。這部分教材在安排上有以下一些特點(diǎn):1、從學(xué)生已有的知識(shí)和生活經(jīng)驗(yàn)出發(fā),幫助學(xué)生理解數(shù)學(xué)。2、設(shè)置數(shù)學(xué)活動(dòng)生活情境,培養(yǎng)學(xué)生的解決問(wèn)題意識(shí)和探究精神。(二)說(shuō)學(xué)生對(duì)學(xué)生來(lái)說(shuō),利用已有的知識(shí)和生活經(jīng)驗(yàn),依據(jù)數(shù)量關(guān)系列式解答并不困難,但要求學(xué)生找準(zhǔn)誰(shuí)和誰(shuí)比,很重要。二、說(shuō)教學(xué)目標(biāo)與重難點(diǎn)根據(jù)以上分析,我確定了本節(jié)課的教學(xué)目標(biāo)如下:1、使學(xué)生加深對(duì)百分?jǐn)?shù)的認(rèn)識(shí),理解生活中的百分率的含義,掌握求百分率的方法。2、依據(jù)分?jǐn)?shù)與百分?jǐn)?shù)應(yīng)用題的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的遷移類推能力和數(shù)學(xué)的應(yīng)用意識(shí)3、讓學(xué)生在具體的情況中感受百分?jǐn)?shù)來(lái)源于生活實(shí)際,在應(yīng)用中體驗(yàn)數(shù)學(xué)的價(jià)值。重點(diǎn):解答求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的應(yīng)用題。
多年的小學(xué)教學(xué)經(jīng)驗(yàn)告訴我:小學(xué)高年級(jí)的學(xué)生已有一定的自學(xué)能力,關(guān)鍵是看我們?cè)O(shè)置的情景和學(xué)生的生活是不是緊密聯(lián)系,是不是喚起了學(xué)生的已有表象,并不和使用多種媒體有絕對(duì)聯(lián)系。所以在學(xué)習(xí)例題中我引導(dǎo)學(xué)生自主探討,從中發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,最后獨(dú)立解決問(wèn)題,從而訓(xùn)練學(xué)生數(shù)學(xué)語(yǔ)言表達(dá)能力,發(fā)展學(xué)生的創(chuàng)造性思維。⒋質(zhì)疑問(wèn)難。㈣新知總結(jié)對(duì)上面所學(xué)知識(shí),教師引導(dǎo)學(xué)生作一次歸納總結(jié),讓學(xué)生明確要求圓周長(zhǎng)時(shí),必須設(shè)法求得圓的直徑或半徑。這樣使學(xué)生對(duì)求圓周長(zhǎng)有明確的認(rèn)識(shí),進(jìn)一步深化重點(diǎn)。㈤新知運(yùn)用國(guó)家教委加強(qiáng)與改進(jìn)小學(xué)數(shù)學(xué)教學(xué)的意見(jiàn)中提出:基礎(chǔ)訓(xùn)練是使學(xué)生融會(huì)貫通地掌握知識(shí),形成熟練技能和發(fā)展智力的重要手段。所以在本節(jié)練習(xí)中我以基礎(chǔ)練習(xí)為主,適當(dāng)補(bǔ)充了提高練習(xí)。
②癌癥患者在治療過(guò)程中,會(huì)有很大的身體損耗,而黃鱔有很好的滋補(bǔ)作用,適當(dāng)吃一點(diǎn)黃鱔,既能夠?yàn)榛颊哐a(bǔ)充營(yíng)養(yǎng),也能夠提高患者的身體免疫力。 (來(lái)源于報(bào)紙)經(jīng)過(guò)討論交流,每一組一名同學(xué)自主發(fā)言,老師點(diǎn)撥,最后形成小結(jié)??磥?lái)源 要權(quán)威發(fā)布,不要道聽(tīng)途說(shuō)看內(nèi)容 要事實(shí)清晰,不要模糊遺漏看立場(chǎng) 要客觀公允,不要情緒煽動(dòng)看邏輯 要嚴(yán)謹(jǐn)準(zhǔn)確,不要簡(jiǎn)單斷言情感判斷 理性判斷 理性表達(dá)(四)活動(dòng)三,重實(shí)踐新課標(biāo)提到,語(yǔ)文課程應(yīng)引導(dǎo)學(xué)生在真實(shí)的語(yǔ)言運(yùn)用情境中,通過(guò)自主的語(yǔ)言實(shí)踐活動(dòng),積累經(jīng)驗(yàn),把握規(guī)律,培養(yǎng)能力。據(jù)此,我設(shè)計(jì)了以下貼近學(xué)生生活、可參與性強(qiáng)的活動(dòng)。多媒體展示案例,仍然是先討論交流,再自主發(fā)言,說(shuō)出案例有哪些問(wèn)題。這是某校園論壇上的一則尋物啟示。
1.估計(jì)一下教室地面的大小,并說(shuō)說(shuō)你是怎樣估計(jì)的?如果知道教室的長(zhǎng)為8米,寬為6米,請(qǐng)問(wèn)它的面積是多少?如果要在教室的天花板一周圍上裝飾線條,需要多少米線條?2.小剛房間的一面墻壁長(zhǎng)6米,寬3米,墻上有一扇窗面積是3平方米,現(xiàn)在要粉刷這面墻壁,要粉刷的面積是多少?3.一輛灑水車每分行駛60米,灑水的寬度是8米,灑水車直行9分,被灑水的地面是多少平方米?4.一張長(zhǎng)方形的紙,長(zhǎng)9厘米,寬4厘米,剪下一個(gè)最大的正方形后,剩下紙片的面積是多少平方厘米?5.小明用36厘米長(zhǎng)的鐵絲圍成一個(gè)正方形,這個(gè)正方形的面積是多少平方厘米?6.有兩個(gè)大小一樣的長(zhǎng)方形,長(zhǎng)18厘米,寬9厘米,拼成一個(gè)正方形,它的周長(zhǎng)是多少?拼成一個(gè)長(zhǎng)方形,它的周長(zhǎng)是多少?拼成的兩個(gè)圖形面積有什么關(guān)系?是多少?
讓學(xué)生再用計(jì)算器計(jì)算,然后讓學(xué)生談?wù)動(dòng)龅降膯?wèn)題(計(jì)算器已經(jīng)不能把這些數(shù)顯示出來(lái)了)。最后讓學(xué)生根據(jù)上面的計(jì)算結(jié)果,找出規(guī)律,再直接寫(xiě)出后四題的得數(shù),并組織學(xué)生交流,要求學(xué)生說(shuō)說(shuō)自己的思考過(guò)程及依據(jù),確認(rèn)發(fā)現(xiàn)的規(guī)律,讓學(xué)生進(jìn)一步體會(huì)計(jì)算器的作用:計(jì)算器還可以幫助我們探索規(guī)律。(設(shè)計(jì)意圖:設(shè)計(jì)不同層次的練習(xí),使學(xué)生體驗(yàn)計(jì)算器的有用性,提高學(xué)生解決問(wèn)題的能力,培養(yǎng)學(xué)生辨證思維能力)四、最后進(jìn)行全課總結(jié)。整個(gè)活動(dòng),老師創(chuàng)設(shè)情境,啟發(fā)誘導(dǎo),設(shè)疑激趣,學(xué)生自主探索,動(dòng)手操作,積極思考,討論交流,給學(xué)生提供了充分的數(shù)學(xué)活動(dòng)機(jī)會(huì),充分發(fā)揮了學(xué)生的主體作用,使學(xué)生不僅掌握了知識(shí),發(fā)展了能力,同時(shí)又體驗(yàn)了數(shù)學(xué)問(wèn)題的探索性與創(chuàng)造性,以及成功的喜悅,學(xué)生學(xué)得輕松,學(xué)得主動(dòng),學(xué)有創(chuàng)造,學(xué)有發(fā)展
四、小結(jié)1.知識(shí):如何采用兩角和或差的正余弦公式進(jìn)行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問(wèn)題是對(duì)三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問(wèn)題.2.思想:本節(jié)課通過(guò)由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過(guò)探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力和應(yīng)用意識(shí),進(jìn)一步培養(yǎng)學(xué)生的建模意識(shí).五、作業(yè)1. 課時(shí)練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識(shí)要點(diǎn),及運(yùn)用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯(cuò)點(diǎn);
問(wèn)題二:上述問(wèn)題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績(jī)存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫(huà)了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績(jī)波動(dòng)范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說(shuō),極差度量出的差異誤差較大。問(wèn)題三:你還能想出其他刻畫(huà)數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績(jī)很穩(wěn)定,那么大多數(shù)的射擊成績(jī)離平均成績(jī)不會(huì)太遠(yuǎn);相反,如果射擊的成績(jī)波動(dòng)幅度很大,那么大多數(shù)的射擊成績(jī)離平均成績(jī)會(huì)比較遠(yuǎn)。因此,我們可以通過(guò)這兩組射擊成績(jī)與它們的平均成績(jī)的“平均距離”來(lái)度量成績(jī)的波動(dòng)幅度。
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
2、講授新課:(35分鐘)通過(guò)教材第一目的講解,讓學(xué)生明白,生活和學(xué)習(xí)中有許多蘊(yùn)涵哲學(xué)道理的故事,表明哲學(xué)并不神秘總結(jié)并過(guò)渡:生活也離不開(kāi)哲學(xué),哲學(xué)可以是我正確看待自然、人生、和社會(huì)的發(fā)展,從而指導(dǎo)人們正確的認(rèn)識(shí)和改造世界。整個(gè)過(guò)程將伴隨著多媒體影像資料和生生對(duì)話討論以提高學(xué)生的積極性。3、課堂反饋,知識(shí)遷移。最后對(duì)本科課進(jìn)行小結(jié),鞏固重點(diǎn)難點(diǎn),將本課的哲學(xué)知識(shí)遷移到與生活相關(guān)的例子,實(shí)現(xiàn)對(duì)知識(shí)的升華以及學(xué)生的再次創(chuàng)新;可使學(xué)生更深刻地理解重點(diǎn)和難點(diǎn),為下一框?qū)W習(xí)做好準(zhǔn)備。4、板書(shū)設(shè)計(jì)我采用直觀板書(shū)的方法,對(duì)本課的知識(shí)網(wǎng)絡(luò)在多媒體上進(jìn)行展示。盡可能的簡(jiǎn)潔,清晰。使學(xué)生對(duì)知識(shí)框架一目了然,幫助學(xué)生構(gòu)建本課的知識(shí)結(jié)構(gòu)。5、布置作業(yè)我會(huì)留適當(dāng)?shù)淖詼y(cè)題及教學(xué)案例讓同學(xué)們做課后練習(xí)和思考,檢驗(yàn)學(xué)生對(duì)本課重點(diǎn)的掌握以及對(duì)難點(diǎn)的理解。并及時(shí)反饋。對(duì)學(xué)生在理解中仍有困難的知識(shí)點(diǎn),我會(huì)在以后的教學(xué)中予以疏導(dǎo)。
本課是高中數(shù)學(xué)第一章第4節(jié),充要條件是中學(xué)數(shù)學(xué)中最重要的數(shù)學(xué)概念之一, 它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學(xué)學(xué)習(xí)特別是數(shù)學(xué)推理的學(xué)習(xí)打下基礎(chǔ)。從學(xué)生學(xué)習(xí)的角度看,與舊教材相比,教學(xué)時(shí)間的前置,造成學(xué)生在學(xué)習(xí)充要條件這一概念時(shí)的知識(shí)儲(chǔ)備不夠豐富,邏輯思維能力的訓(xùn)練不夠充分,這也為教師的教學(xué)帶來(lái)一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個(gè)概念,由于這些概念比較抽象,中學(xué)生不易理解,用它們?nèi)ソ鉀Q具體問(wèn)題則更為困難,因此”充要條件”的教學(xué)成為中學(xué)數(shù)學(xué)的難點(diǎn)之一,而必要條件的定義又是本節(jié)內(nèi)容的難點(diǎn).A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會(huì)判斷命題的充分條件、必要條件、充要條件.C.通過(guò)學(xué)習(xí),使學(xué)生明白對(duì)條件的判定應(yīng)該歸結(jié)為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學(xué)生思維能力的嚴(yán)密性品質(zhì).
6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說(shuō)這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來(lái)檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說(shuō)明了什么道理?